
Distributed Programs Distributed CSs Distributed CSs #2

Distributed Algorithms

Johannes Åman Pohjola
UNSW

Term 2 2022
1



Distributed Programs Distributed CSs Distributed CSs #2

Where we’re at

We’ve concluded our coverage of proof methods, and dipped our toes into process
algebra.

This week, we’ll discuss some classic distributed algorithms.

First up though...

2



Distributed Programs Distributed CSs Distributed CSs #2

Exam info

The final exam will start on August 22 8AM–August 23 8AM.

It’s a 3–4h exam with a 24h timing window. This means you control your own
scheduling: break for lunch, go to the beach, sleep on it and try again in the morning...

I’ll email you the exam papers when the exam starts. Submission is via give, same as
homework and assignments.

I’ll talk about the content of the exam in Week 10.

3



Distributed Programs Distributed CSs Distributed CSs #2

Parallel Distributed Execution

P P’ Q R

CPU

L1 Cache

L2 Cache

Main Memory

CPU

L1 Cache

L2 Cache

Main Memory

CPU

L1 Cache

L2 Cache

Main Memory

network

4



Distributed Programs Distributed CSs Distributed CSs #2

Parallel Distributed Execution

Computation can be distributed over several nodes (or locations). Communication
between nodes uses message passing. Ben-Ari’s basic model is: reliable asynchronous
message passing with possible reordering of messages.

Locally, each node may run several processes. Processes on the same node
communicate via shared memory.

NB

For convenience, we will generally assume that all local computation at a node is
executed atomically. (We know how to do that already.)
“In particular, when a message is received the handling of the message is considered
part of the same atomic statement.” - Ben-Ari

5



Distributed Programs Distributed CSs Distributed CSs #2

Parallel Distributed Execution

Computation can be distributed over several nodes (or locations). Communication
between nodes uses message passing. Ben-Ari’s basic model is: reliable asynchronous
message passing with possible reordering of messages.

Locally, each node may run several processes. Processes on the same node
communicate via shared memory.

NB

For convenience, we will generally assume that all local computation at a node is
executed atomically. (We know how to do that already.)
“In particular, when a message is received the handling of the message is considered
part of the same atomic statement.” - Ben-Ari

6



Distributed Programs Distributed CSs Distributed CSs #2

Parallel Distributed Execution

Computation can be distributed over several nodes (or locations). Communication
between nodes uses message passing. Ben-Ari’s basic model is: reliable asynchronous
message passing with possible reordering of messages.

Locally, each node may run several processes. Processes on the same node
communicate via shared memory.

NB

For convenience, we will generally assume that all local computation at a node is
executed atomically. (We know how to do that already.)
“In particular, when a message is received the handling of the message is considered
part of the same atomic statement.” - Ben-Ari

7



Distributed Programs Distributed CSs Distributed CSs #2

Sending and Receiving Messages

send(tag, destination, [parameters])
receive(tag, [parameters])

node 5

integer k ← 20
send(request, 3, k, 30)

node 3

integer m, n
receive(request, m, n)

-

Senders are anonymous be default. Messages can be chosen based on pattern
matching on the tag.

8



Distributed Programs Distributed CSs Distributed CSs #2

Time, Clocks and the Ordering of Events

A fundamental problem is to reach agreement on the order of events.

We receive two messages, from other nodes in a distributed system. Which message
should we treat as more “recent”?
Can we use...

...the order we received them in?

...timestamps attached to messages?

No. Messages may arrive out-of-order. We cannot assume that the clocks at different
nodes are perfectly in synch.

9



Distributed Programs Distributed CSs Distributed CSs #2

Time, Clocks and the Ordering of Events

A fundamental problem is to reach agreement on the order of events.

We receive two messages, from other nodes in a distributed system. Which message
should we treat as more “recent”?
Can we use...

...the order we received them in?

...timestamps attached to messages?

No. Messages may arrive out-of-order. We cannot assume that the clocks at different
nodes are perfectly in synch.

10



Distributed Programs Distributed CSs Distributed CSs #2

Time, Clocks and the Ordering of Events

Given two events from nodes A and B, node C cannot tell which happened first.

Fortunately, we don’t need to. We just need all nodes to agree on an order that could
have happened; or in other words, a causally consistent order.

Remember, events in a concurrent system are partially ordered. We write a→ b (“a
must happen before b”) if either:

1 a and b occur in the same process, and a happens before b.

2 a is the sending of a message, and b is the receipt of the same message.

3 There exists c such that a→ c and c → b (transitivity).

11



Distributed Programs Distributed CSs Distributed CSs #2

Time, Clocks and the Ordering of Events

Given two events from nodes A and B, node C cannot tell which happened first.

Fortunately, we don’t need to. We just need all nodes to agree on an order that could
have happened; or in other words, a causally consistent order.

Remember, events in a concurrent system are partially ordered. We write a→ b (“a
must happen before b”) if either:

1 a and b occur in the same process, and a happens before b.

2 a is the sending of a message, and b is the receipt of the same message.

3 There exists c such that a→ c and c → b (transitivity).

12



Distributed Programs Distributed CSs Distributed CSs #2

Time, Clocks and the Ordering of Events

Given two events from nodes A and B, node C cannot tell which happened first.

Remember, events in a concurrent system are partially ordered. We write a→ b (“a
causally depends on b”) if either:

1 a and b occur in the same process, and a happens before b.

2 a is the sending of a message, and b is the receipt of the same message.

3 There exists c such that a→ c and c → b (transitivity).

If neither of the above, a and b are concurrent events. The events we have in mind are
sends and receives; we ignore internal events.

13



Distributed Programs Distributed CSs Distributed CSs #2

Time, Clocks and the Ordering of Events

Can we get all nodes to agree on a total ordering of events that is consistent with → ?

Lamport’s solution with logical clocks:

1 Each process i maintains a logical clock ci ∈ N.

2 Each process increments ci when it performs an event.

3 When i sends a message, it attaches ci (a logical timestamp).

4 When i receives a message with timestamp cj , assign ci := max(ci , cj) + 1.

Events can now be totally ordered by their timestamps! (With PIDs as tiebreakers, as
in the Bakery algorithm.)

14



Distributed Programs Distributed CSs Distributed CSs #2

Time, Clocks and the Ordering of Events

Can we get all nodes to agree on a total ordering of events that is consistent with → ?

Lamport’s solution with logical clocks:

1 Each process i maintains a logical clock ci ∈ N.

2 Each process increments ci when it performs an event.

3 When i sends a message, it attaches ci (a logical timestamp).

4 When i receives a message with timestamp cj , assign ci := max(ci , cj) + 1.

Events can now be totally ordered by their timestamps! (With PIDs as tiebreakers, as
in the Bakery algorithm.)

15



Distributed Programs Distributed CSs Distributed CSs #2

Time, Clocks and the Ordering of Events

The ordering induced by the timestamps is now causally consistent:

Theorem (Clock condition)

Let C (a) denote the timestamp after event a. We have that a→ b implies
C (a) < C (b).

More on Lamport Clocks in this classic paper:

Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed System.
CACM 1978. https://lamport.azurewebsites.net/pubs/time-clocks.pdf

16

https://lamport.azurewebsites.net/pubs/time-clocks.pdf


Distributed Programs Distributed CSs Distributed CSs #2

Distributed Mutual Exclusion

Imagine a dumb peripheral such as an old printer on a network. The other nodes need
to sort out mutually exclusive access, to avoid printing interleaved text.

This is easy if we nominate one central node as sole arbiter of who gets access. But in
distributed systems, symmetric solutions, where no one node is indispensable, are
preferred.

17



Algorithm 2.1: Ricart-Agrawala algorithm (outline)
integer myNum ← 0, set of node IDs deferred ← ∅

main
p1: non-critical section
p2: myNum ← chooseNumber
p3: for all other nodes N
p4: send(request, N, myID, myNum)
p5: await replies from all other nodes
p6: critical section
p7: for all nodes N in deferred
p8: remove N from deferred
p9: send(reply, N, myID)

receive
integer source, reqNum

p10: receive(request, source, reqNum)
p11: if reqNum < myNum
p12: send(reply,source,myID)
p13: else add source to deferred



Distributed Programs Distributed CSs Distributed CSs #2

RA Algorithm (1)

Aaron 10

Becky 5 Chloe 15

-
req

� req

�
�

�
�	

req
@
@
@
@R

req

�
�
��� req

@
@
@@I req

19



Distributed Programs Distributed CSs Distributed CSs #2

RA Algorithm (2)

Aaron 10

Chloe

Becky • 5

Aaron, Chloe

Chloe 15
�

reply

�
�

�
�	

reply

@
@

@@I reply

20



Distributed Programs Distributed CSs Distributed CSs #2

Virtual Queue in the RA Algorithm

Becky Aaron Chloe� �

21



Distributed Programs Distributed CSs Distributed CSs #2

RA Algorithm (3)

Aaron • 10

Chloe

Becky 5 Chloe 15reply
-

reply

�
�
���

22



Distributed Programs Distributed CSs Distributed CSs #2

RA Algorithm (4)

Aaron 10

Becky 5 Chloe • 15

@
@
@
@R

reply

23



Distributed Programs Distributed CSs Distributed CSs #2

Problems

There are three distinct problems with the RA algorithm sketch:

deadlock when equal ticket numbers are chosen

¬mutex when low numbers are chosen later

deadlock when nodes retire

24



Distributed Programs Distributed CSs Distributed CSs #2

Equal Ticket Numbers

Becky 5 Aaron 5

-
req

�
req

Standard fix: (ab)use process IDs to break ties eg by using <lex on number/process
ID pairs rather than < in line p11.

25



Distributed Programs Distributed CSs Distributed CSs #2

Equal Ticket Numbers

Becky 5

Aaron

Aaron 5

Becky

Standard fix: (ab)use process IDs to break ties eg by using <lex on number/process
ID pairs rather than < in line p11.

26



Distributed Programs Distributed CSs Distributed CSs #2

Equal Ticket Numbers

Becky 5

Aaron

Aaron 5

Becky

deadlock

Standard fix: (ab)use process IDs to break ties eg by using <lex on number/process
ID pairs rather than < in line p11.

27



Distributed Programs Distributed CSs Distributed CSs #2

Equal Ticket Numbers

Becky 5

Aaron

Aaron 5

Becky

deadlock

Standard fix: (ab)use process IDs to break ties eg by using <lex on number/process
ID pairs rather than < in line p11.

28



Distributed Programs Distributed CSs Distributed CSs #2

Choosing Ticket Numbers

Becky 5 Aaron 10

-
req

�
req

Standard fix: keep track of highest seen ticket number; choose higher than that in
line p2.

29



Distributed Programs Distributed CSs Distributed CSs #2

Choosing Ticket Numbers

Becky 5

Aaron

Aaron 10
�

reply

Standard fix: keep track of highest seen ticket number; choose higher than that in
line p2.

30



Distributed Programs Distributed CSs Distributed CSs #2

Choosing Ticket Numbers

Becky • 5

Aaron

Aaron 10

Standard fix: keep track of highest seen ticket number; choose higher than that in
line p2.

31



Distributed Programs Distributed CSs Distributed CSs #2

Choosing Ticket Numbers

Becky 5 Aaron 10

-
reply

Standard fix: keep track of highest seen ticket number; choose higher than that in
line p2.

32



Distributed Programs Distributed CSs Distributed CSs #2

Choosing Ticket Numbers

Becky Aaron • 10

Standard fix: keep track of highest seen ticket number; choose higher than that in
line p2.

33



Distributed Programs Distributed CSs Distributed CSs #2

Choosing Ticket Numbers

Becky 8 Aaron • 10

Standard fix: keep track of highest seen ticket number; choose higher than that in
line p2.

34



Distributed Programs Distributed CSs Distributed CSs #2

Choosing Ticket Numbers

Becky 8 Aaron • 10

-
req

Standard fix: keep track of highest seen ticket number; choose higher than that in
line p2.

35



Distributed Programs Distributed CSs Distributed CSs #2

Choosing Ticket Numbers

Becky 8 Aaron • 10
�

reply

Standard fix: keep track of highest seen ticket number; choose higher than that in
line p2.

36



Distributed Programs Distributed CSs Distributed CSs #2

Choosing Ticket Numbers

Becky • 8 Aaron • 10

Standard fix: keep track of highest seen ticket number; choose higher than that in
line p2.

37



Distributed Programs Distributed CSs Distributed CSs #2

Choosing Ticket Numbers

Becky • 8 Aaron • 10

Standard fix: keep track of highest seen ticket number; choose higher than that in
line p2.

38



Distributed Programs Distributed CSs Distributed CSs #2

Quiescent Nodes

Becky 5 Aaron (zzz) 0

-
req

Standard fix: have an intent flag; ignore ticket number in the absence of intent (line
p11).

39



Distributed Programs Distributed CSs Distributed CSs #2

Quiescent Nodes

Becky 5 Aaron (zzz) 0

Becky

Standard fix: have an intent flag; ignore ticket number in the absence of intent (line
p11).

40



Distributed Programs Distributed CSs Distributed CSs #2

Quiescent Nodes

Becky 5 Aaron (zzz) 0

Becky

Standard fix: have an intent flag; ignore ticket number in the absence of intent (line
p11).

41



Algorithm 2.2: Ricart-Agrawala algorithm
integer myNum ← 0
set of node IDs deferred ← ∅
integer highestNum ← 0
boolean requestCS ← false

Main
loop forever

p1: non-critical section
p2: requestCS ← true
p3: myNum ← highestNum + 1
p4: for all other nodes N
p5: send(request, N, myID, myNum)
p6: await replies from all other nodes
p7: critical section
p8: requestCS ← false
p9: for all nodes N in deferred
p10: remove N from deferred
p11: send(reply, N, myID)



Distributed Programs Distributed CSs Distributed CSs #2

Algorithm 2.2: Ricart-Agrawala algorithm (continued)

Receive
integer source, requestedNum
loop forever

p1: receive(request, source, requestedNum)
p2: highestNum ← max(highestNum, requestedNum)
p3: if not requestCS or (requestedNum,source) <lex (myNum,myID)
p4: send(reply, source, myID)
p5: else add source to deferred

43



Distributed Programs Distributed CSs Distributed CSs #2

Correctness of RA

We show mutual exclusion and eventual entry.
For mutual exclusion, suppose nodes i and k are in the CS; we distinguish 3 cases of
when their ticket numbers, myNumi and myNumk were last chosen:

Case 1: node k chose myNumk after replying to i

Case 2: node i chose myNumi after replying to k (symmetric)

Case 3: nodes i and k chose myNumi and myNumk before replying

44



Distributed Programs Distributed CSs Distributed CSs #2

Mutual Exclusion, Case 1

Happens-before diagram based on local order and receive-after-send causality in this
case:

i choose - send
request

-k
receive
request

- reply - choose

myNumk must be greater than myNumi hence i won’t reply before leaving the CS.

45



Distributed Programs Distributed CSs Distributed CSs #2

Mutual Exclusion, Case 3

i main

i receive

choose - send
request

- receive
request

- reply

k main

k receive

choose - send
request

- receive
request

- reply

<lex is a total order and both i and k have requestCS = true, hence one of them must
defer its reply.

46



Distributed Programs Distributed CSs Distributed CSs #2

Alternative proof

This informal proof was based on behavioural reasoning: a style of argumentation that
tends to go “if this happened then that must have happened”.

If you find such proofs a bit dodgy (in which case you’re in good company), there’s a
proper formal invariant proof here:

Ekaterina Sedletsky, Amir Pnueli and Mordechai Ben-Ari. Formal Verification of the
Ricart-Agrawala Algorithm. FSTTCS 2000. https://doi.org/10.1007/3-540-44450-5 26

47

https://doi.org/10.1007/3-540-44450-5_26


Distributed Programs Distributed CSs Distributed CSs #2

RA: Eventual Entry

Suppose node i wants to enter the CS. It will eventually progress until it’s stuck in p6,
waiting for replies.

Its request messages will eventually arrive at all other nodes, making them aware of
myNumi . Thus, the others subsequently choose higher numbers.

As usual, nodes can only fall asleep in the non-CS, so all those ahead of i in the virtual
queue must eventually enter their CS and leave it, too.

48



Distributed Programs Distributed CSs Distributed CSs #2

RA: Eventual Entry

Suppose node i wants to enter the CS. It will eventually progress until it’s stuck in p6,
waiting for replies.

Its request messages will eventually arrive at all other nodes, making them aware of
myNumi . Thus, the others subsequently choose higher numbers.

As usual, nodes can only fall asleep in the non-CS, so all those ahead of i in the virtual
queue must eventually enter their CS and leave it, too.

49



Distributed Programs Distributed CSs Distributed CSs #2

Channels in RA (Promela)

node k

· · ·
node i

node id

�
��

�

HHHH -
ch[id]

Every node has a single channel for receiving messages; all senders share it.

RA promela code available on the course website.

50



Distributed Programs Distributed CSs Distributed CSs #2

Back to Distributed CSs

Ricart-Agrawala works (mutex, dlf, starvation-freedom) but exchanges 2(n + 1)
messages per CS access, even in the absence of contention.
Idea: have 1 token in the system; pass it around as a right to enter CS. We expect:

mutual exclusion: trivial

absence of unnecessary delay: trivial

deadlock-freedom: maybe

starvation-freedom: maybe not

51



Distributed Programs Distributed CSs Distributed CSs #2

Algorithm 2.3: Ricart-Agrawala token-passing algorithm
boolean haveToken ← true in node 0, false in others
integer array[NODES] requested ← [0,. . . ,0]
integer array[NODES] granted ← [0,. . . ,0]
integer myNum ← 0
boolean inCS ← false

sendToken
if ∃ N. requested[N] > granted[N]

for some such N
send(token, N, granted)
haveToken ← false

52



,
Algorithm 2.3: Ricart-Agrawala token-passing algorithm (continued)

Main
loop forever

p1: non-critical section
p2: if not haveToken
p3: myNum ← myNum + 1
p4: for all other nodes N
p5: send(request, N, myID, myNum)
p6: receive(token, granted)
p7: haveToken ← true
p8: inCS ← true
p9: critical section
p10: granted[myID] ← myNum
p11: inCS ← false
p12: sendToken



Distributed Programs Distributed CSs Distributed CSs #2

Algorithm 2.3: Ricart-Agrawala token-passing algorithm (continued)

Receive
integer source, reqNum
loop forever

p13: receive(request, source, reqNum)
p14: requested[source] ← max(requested[source], reqNum)
p15: if haveToken and not inCS
p16: sendToken

54



Distributed Programs Distributed CSs Distributed CSs #2

Data Structures for RA Token-Passing Algorithm

“granted” = last ticket numbers when entering CS (accurate at token owner)
“requested” = last known ticket numbers

Example (Chloe’s view)

requested

granted

Aaron Becky Chloe Danielle Evan

4 2 2 4 1

4 3 0 5 1

55



Distributed Programs Distributed CSs Distributed CSs #2

RA Token-Passing Algorithm Properties

Only 1 token in the system =⇒ mutex.
Requests being delivered eventually =⇒ dlf.
Arbitrary choice of token recipient in sendToken =⇒ potential starvation.

Potential fix: choose lowest “granted” value among those i with granted[i ] <
requested[i ] as token recipient in sendToken.
Remaining problem: messages are big. Still inefficient for larger N.

56



Distributed Programs Distributed CSs Distributed CSs #2

RA Token-Passing Algorithm Properties

Only 1 token in the system =⇒ mutex.
Requests being delivered eventually =⇒ dlf.
Arbitrary choice of token recipient in sendToken =⇒ potential starvation.
Potential fix: choose lowest “granted” value among those i with granted[i ] <
requested[i ] as token recipient in sendToken.

Remaining problem: messages are big. Still inefficient for larger N.

57



Distributed Programs Distributed CSs Distributed CSs #2

RA Token-Passing Algorithm Properties

Only 1 token in the system =⇒ mutex.
Requests being delivered eventually =⇒ dlf.
Arbitrary choice of token recipient in sendToken =⇒ potential starvation.
Potential fix: choose lowest “granted” value among those i with granted[i ] <
requested[i ] as token recipient in sendToken.
Remaining problem: messages are big. Still inefficient for larger N.

58



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm

Idea: pass a token in a set of virtual trees;
initially: root of a spanning tree of the system = token holder;
requests are sent to the parent node; parenthood is surrendered (new root of a tree,
but no token yet)
parents relay requests from children; parenthood switched to the sender of the relayed
message
token holder in CS defers the first request until outside CS; parenthood switched to
the first sender; later requests relayed as usual

59



Distributed Programs Distributed CSs Distributed CSs #2

Distributed System for Neilsen-Mizuno Algorithm

Aaron

?

Danielle

�Becky

- Evan

6

Chloe

-
�

-
�

6

?

6

?�
�
��
�

�
�	

�
���@

@@R@
@@I

@
@
@R
@
@
@I

�
��	

60



Distributed Programs Distributed CSs Distributed CSs #2

Spanning Tree in Neilsen-Mizuno Algorithm

Aaron

Danielle

Becky

Evan

Chloe

-

�

@
@I

@
@R

61



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (1)

s

(request, Aaron, Aaron)

Aaron Becky Chloe Danielle Evan- - � �

s

(request, Becky, Aaron)

Aaron Becky Chloe Danielle Evan- � �

Becky changes parent

Aaron Becky Chloe Danielle Evan� � �

62



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (1)

s

(request, Aaron, Aaron)

Aaron Becky Chloe Danielle Evan- - � �

s

(request, Becky, Aaron)

Aaron Becky Chloe Danielle Evan- � �

Becky changes parent

Aaron Becky Chloe Danielle Evan� � �

63



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (1)

s

(request, Aaron, Aaron)

Aaron Becky Chloe Danielle Evan- - � �

s

(request, Becky, Aaron)

Aaron Becky Chloe Danielle Evan- � �

Becky changes parent

Aaron Becky Chloe Danielle Evan� � �

64



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (1)

s

(request, Aaron, Aaron)

Aaron Becky Chloe Danielle Evan- - � �

s

(request, Becky, Aaron)

Aaron Becky Chloe Danielle Evan- � �

Becky changes parent

Aaron Becky Chloe Danielle Evan� � �

65



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (1)

s

(request, Aaron, Aaron)

Aaron Becky Chloe Danielle Evan- - � �

s

(request, Becky, Aaron)

Aaron Becky Chloe Danielle Evan- � �

Becky changes parent

Aaron Becky Chloe Danielle Evan� � �

66



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (2)

Chloe: still in CS

Aaron Becky Chloe Danielle Evan� � �

Evan wants to enter the CS; request messages bubble up to Aaron

Aaron Becky Chloe Danielle Evan� � � �
?

Aaron Becky Chloe Danielle Evan- - - -
?

6

67



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (2)

Chloe: still in CS

Aaron Becky Chloe Danielle Evan� � �

Evan wants to enter the CS; request messages bubble up to Aaron

Aaron Becky Chloe Danielle Evan� � � �
?

Aaron Becky Chloe Danielle Evan- - - -
?

6

68



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (2)

Chloe: still in CS

Aaron Becky Chloe Danielle Evan� � �

Evan wants to enter the CS; request messages bubble up to Aaron

Aaron Becky Chloe Danielle Evan� � � �
?

Aaron Becky Chloe Danielle Evan- - - -
?

6

69



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (2)

Chloe: still in CS

Aaron Becky Chloe Danielle Evan� � �

Evan wants to enter the CS; request messages bubble up to Aaron

Aaron Becky Chloe Danielle Evan� � � �
?

Aaron Becky Chloe Danielle Evan- - - -
?

6

70



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (2)

Chloe: still in CS

Aaron Becky Chloe Danielle Evan� � �

Evan wants to enter the CS; request messages bubble up to Aaron

Aaron Becky Chloe Danielle Evan� � � �
?

Aaron Becky Chloe Danielle Evan- - - -
?

6

71



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (3)

+

(token)

Aaron Becky Chloe Danielle Evan- - - -
?

6

z

(token)

Aaron Becky Chloe Danielle Evan- - - -

6

Aaron Becky Chloe Danielle Evan- - - -

72



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (3)

+

(token)

Aaron Becky Chloe Danielle Evan- - - -
?

6

z

(token)

Aaron Becky Chloe Danielle Evan- - - -

6

Aaron Becky Chloe Danielle Evan- - - -

73



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (3)

+

(token)

Aaron Becky Chloe Danielle Evan- - - -
?

6

z

(token)

Aaron Becky Chloe Danielle Evan- - - -

6

Aaron Becky Chloe Danielle Evan- - - -

74



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (3)

+

(token)

Aaron Becky Chloe Danielle Evan- - - -
?

6

z

(token)

Aaron Becky Chloe Danielle Evan- - - -

6

Aaron Becky Chloe Danielle Evan- - - -

75



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno Algorithm (3)

+

(token)

Aaron Becky Chloe Danielle Evan- - - -
?

6

z

(token)

Aaron Becky Chloe Danielle Evan- - - -

6

Aaron Becky Chloe Danielle Evan- - - -

76



,
Algorithm 2.4: Neilsen-Mizuno token-passing algorithm

integer parent ← (initialized to form a tree)
integer deferred ← 0
boolean holding ← true in the root, false in others

Main
loop forever

p1: non-critical section
p2: if not holding
p3: send(request, parent, myID, myID)
p4: parent ← 0
p5: receive(token)
p6: holding ← false
p7: critical section
p8: if deferred 6= 0
p9: send(token, deferred)
p10: deferred ← 0
p11: else holding ← true



Algorithm 2.4: Neilsen-Mizuno token-passing algorithm (continued)

Receive
integer source, originator
loop forever

p12: receive(request, source, originator)
p13: if parent = 0
p14: if holding
p15: send(token, originator)
p16: holding ← false
p17: else deferred ← originator
p18: else send(request, parent, myID, originator)
p19: parent ← source



Distributed Programs Distributed CSs Distributed CSs #2

Neilsen-Mizuno: Correctness

Mutual exclusion is trivial: there’s only ever one token. The original paper has
(informal, behavioural) proofs of deadlock and starvation freedom:

Mitchell L. Neilsen and Masaaki Mizuno. A Dag-Based Algorithm for Distributed
Mutual Exclusion. ICDCS 1991. https://doi.org/10.1109/ICDCS.1991.148689

79

https://doi.org/10.1109/ICDCS.1991.148689


Distributed Programs Distributed CSs Distributed CSs #2

What now?

More distributed algorithms!

Also, Assignment 2 is out. Have a look as soon as possible!

80


	Distributed Programs
	..

	Distributed CSs
	RA

	Distributed CSs #2
	Token Passing

	

